Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  60
 Total visitors :  7660058

Identification and molecular mapping of a major quantitative trait locus underlying branch angle in soybean
Monday, 2022/04/11 | 19:04:41

Chancelor B. ClarkWeidong WangYing WangGabriel J. FearZixiang WenDechun WangBo Ren & Jianxin Ma

Theoretical and Applied GeneticsMarch 2022; vol. 135: 777–784

 

Figure: The branch angle in soybean.

 

Key message

A major quantitative trait locus (QTL) modulating soybean (Glycine max) branch angle was identified by linkage analysis using two bi-parental mapping populations with and without pedigree from wild soybean (Glycine soja).

Abstract

Soybean branch angle is a critical architectural trait that affects many other traits of agronomic importance associated with the plant’s productivity and grain yield and is thus a vital consideration in soybean breeding. However, the genetic basis for modulating this important trait in soybean and many other crops remain unknown. Previously, we developed a recombinant inbred line (RIL) population derived from a cross between a domesticated soybean (Glycine max) variety, Williams 82, and a wild soybean (Glycine soja) accession, PI 479,752, and observed drastic variation in plant architecture including branch angle among individual RILs. In this study, one of the RILs possessing extremely wide branch angle (WBA) was crossed with an elite soybean cultivar (LD00-3309) possessing narrow branch angle (NBA) to produce an F2 population composed of 147 plants and F2-derived F3 families for inheritance analysis and QTL mapping. We found that branch angle is controlled by a major QTL located on chromosome 19, designated qGmBa1 and that WBA—derived from the wild soybean accession—is dominant over NBA. This locus was also detected as a major one underlying branch angle by QTL mapping using a subset of the soybean nested association mapping (SoyNAM) population composed of 140 RILs, which were derived from a cross between a landrace, PI 437169B, possessing WBA and an elite variety, IA3023, possessing NBA. Molecular markers located in the QTL region defined by both mapping populations can be used for marker-assisted selection of branch angle in soybean breeding.

 

See: https://link.springer.com/article/10.1007/s00122-021-03995-9

Back      Print      View: 163

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD