Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  66
 Total visitors :  7653370

In Silico Identification of Cassava Genome-Encoded MicroRNAs with Predicted Potential for Targeting the ICMV-Kerala Begomoviral Pathogen of Cassava
Monday, 2023/06/26 | 08:16:24

Muhammad Aleem AshrafBabar Ali , Judith K BrownImran ShahidNaitong Yu.

Viruses; 2023 Feb 9; 15(2):486. doi: 10.3390/v15020486.

Abstract

Cassava mosaic disease (CMD) is caused by several divergent species belonging to the genus Begomovirus (Geminiviridae) transmitted by the whitefly Bemisia tabaci cryptic species group. In India and other parts of Asia, the Indian cassava mosaic virus-Kerala (ICMV-Ker) is an emergent begomovirus of cassava causing damage that results in reduced yield loss and tuber quality. Double-stranded RNA-mediated interference (RNAi) is an evolutionary conserved mechanism in eukaryotes and highly effective, innate defense system to inhibit plant viral replication and/or translation. The objective of this study was to identify and characterize cassava genome-encoded microRNAs (mes-miRNA) that are predicted to target ICMV-Ker ssDNA-encoded mRNAs, based on four in silico algorithms: miRanda, RNA22, Tapirhybrid, and psRNA. The goal is to deploy the predicted miRNAs to trigger RNAi and develop cassava plants with resistance to ICMV-Ker. Experimentally validated mature cassava miRNA sequences (n = 175) were downloaded from the miRBase biological database and aligned with the ICMV-Ker genome. The miRNAs were evaluated for base-pairing with the cassava miRNA seed regions and to complementary binding sites within target viral mRNAs. Among the 175 locus-derived mes-miRNAs evaluated, one cassava miRNA homolog, mes-miR1446a, was identified to have a predicted miRNA target binding site, at position 2053 of the ICMV-Ker genome. To predict whether the cassava miRNA might bind predicted ICMV-Ker mRNA target(s) that could disrupt viral infection of cassava plants, a cassava locus-derived miRNA-mRNA regulatory network was constructed using Circos software. The in silico-predicted cassava locus-derived mes-miRNA-mRNA network corroborated interactions between cassava mature miRNAs and the ICMV-Ker genome that warrant in vivo analysis, which could lead to the development of ICMV-Ker resistant cassava plants.

 

See https://pubmed.ncbi.nlm.nih.gov/36851701/

 

Back      Print      View: 243

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD