Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  7656811

In silico analysis of carotenoid biosynthesis pathway in cassava ( Manihot esculenta Crantz)
Sunday, 2022/11/13 | 06:40:40

Janardanan Sreekumar 1P A Muhammed SadiqSaravanan RajuArchana Mukherjee

J Genet.; 2022; 101:2. https://doi.org/10.1007/s12041-021-01345-8

Abstract

The apocarotenoids play a vital role in plant growth and development process, especially strigolactones, which can induce rooting and help in the interaction with symbiotic microbes in plants. They also act as colorants, antioxidants, hormones, signalling components, scent/aroma constituents and chromophores. In silico approaches are valuable in reducing the complexity regarding gene networks in plants that help to develop new biotechnological and bioinformatics tactics in crop improvement programmes. An in silico comparative genomic analysis of the key enzymes encoding genes involved in apocarotenoid biosynthesis in cassava was carried out using template plants such as arabidopsis, tomato, potato and sweet potato. Forty carotenoid genes were identified, and the nucleotide sequences were subjected to various regulatory sequence analyses such as transcription factor prediction, CpG island analysis, microRNA regulatory analysis and promotor sequence analysis. The corresponding protein sequences were subjected to domain/motif analysis and phylogenetic analysis. The expression profile of apocarotenoid genes in cassava were generated and subcellular localization prediction was done to identify the distribution of the proteins. The results indicated that the apocarotenoid protein domains were conserved in template plants and cassava. Eighteen transcription factors like MYB, BBR-BPC, bHLH and NAC were associated with the identified carotenoid genes in cassava. The apocarotenoid genes were found to be expressed in all the major parts of the plants. These genes were distributed in 17 of 18 cassava chromosomes and the third one contained maximum number of genes. MiRNA regulatory analysis identified three microRNAs, namely miR159a, miR171b and miR396a which were significantly associated with carotenoid biosynthesis in cassava and the pathway was reconstructed by incorporating the above information. A better understanding of the genes and pathway associated with carotenoid biosynthesis in cassava would be helpful in the breeding programme to develop improved carotenoid rich varieties.

 

See https://pubmed.ncbi.nlm.nih.gov/35129135/ or https://www.ias.ac.in/article/fulltext/jgen/101/0002

 

Back      Print      View: 142

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD