Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  35
 Total visitors :  7651268

Infuence of the mating design on the additive genetic variance in plant breeding populations
Monday, 2023/11/06 | 08:42:01

Tobias Lanzl, Albrecht E. Melchinger, Chris‑Carolin Schön

Theoretical and Applied Genetics; Nov. 2023; vol. 136:236

Key message

Mating designs determine the realized additive genetic variance in a population sample. Deflated or inflated variances can lead to reduced or overly optimistic assessment of future selection gains.

Abstract

The additive genetic variance VA  inherent to a breeding population is a major determinant of short- and long-term genetic gain. When estimated from experimental data, it is not only the additive variances at individual loci (QTL) but also covariances between QTL pairs that contribute to estimates of VA . Thus, estimates of VA depend on the genetic structure of the data source and vary between population samples. Here, we provide a theoretical framework for calculating the expectation and variance of VA from genotypic data of a given population sample. In addition, we simulated breeding populations derived from different numbers of parents (P = 2, 4, 8, 16) and crossed according to three different mating designs (disjoint, factorial and half-diallel crosses). We calculated the variance of VA and of the parameter b reflecting the covariance component in VA standardized by the genic variance. Our results show that mating designs resulting in large biparental families derived from few disjoint crosses carry a high risk of generating progenies exhibiting strong covariances between QTL pairs on different chromosomes. We discuss the consequences of the resulting deflated or inflated VA estimates for phenotypic and genome-based selection as well as for applying the usefulness criterion in selection. We show that already one round of recombination can effectively break negative and positive covariances between QTL pairs induced by the mating design. We suggest to obtain reliable estimates of VA and its components in a population sample by applying statistical methods differing in their treatment of QTL covariances.

 

See https://link.springer.com/article/10.1007/s00122-023-04447-2

Figure 1; (A) Crossing schemes of the three mating designs (disjoint cross (DC), factorial cross (FC), and half-diallel cross (HC)) exemplified with four parental lines (P1,P2,P3,P4). (B) Flowchart for one replication of the simulation, starting with the sampling of P∈{2,4,8,16} parental lines and N∈{50,250,1000} genotypes in the simulated populations. G1, G2, G3, G4 refer to the generation of intermating and G1-DH, G2-DH, G3-DH, G4-DH to the DH populations derived from the respective generation

 

Back      Print      View: 187

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD