Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  20
 Total visitors :  7654496

Integrated analysis of biparental and natural populations reveals CRIB domain-containing protein underlying seed coat crack trait in watermelon
Thursday, 2023/04/06 | 08:06:39

Qi MiHongqian PangFeishi LuanPeng Gao & Shi Liu

Theoretical and Applied Genetics April 2023; vol. 136, Article number: 95

Published: April 4 2023

Key message

The scc locus of the watermelon seed coat crack trait was fine mapped on chromosome 3. Cla97C03G056110 (annotated as CRIB domain-containing protein) was regarded as the most likely candidate gene

Abstract

Seed coat crack (scc) is a special characteristic of watermelon compared with other cucurbit crops. However, information regarding the genetic basis of this trait is limited. We conducted a genetic analysis of six generations derived from PI 192938 (scc) and Cream of Saskatchewan (COS) (non-scc) parental lines and found that the scc trait was regulated by a single recessive gene through two years. Bulk segregant analysis sequencing (BSA-seq) and initial mapping placed the scc locus into an 808.8 kb region on chromosome 3. Evaluation of another 1152 F2 plants narrowed the scc locus to a 277.11 kb region containing 37 candidate genes. Due to the lack of molecular markers in the fine-mapping interval, we extracted the genome sequence variations in this 277.11 kb region with in silico BSA among seventeen re-sequenced lines (6 scc and 11 non-scc) and finally delimited the scc locus to an 8.34 kb region with only one candidate gene Cla97C03G056110 (CRIB domain-containing protein). Three single nucleotide polymorphism loci in the promoter region of Cla97C03G056110 altered cis-acting elements that were highly correlated with the nature watermelon panel. The expression of Cla97C03G056110 in seed coat tissue was higher in non-scc than in scc lines and was specifically expressed in seed coat compared with fruit flesh.

 

See https://link.springer.com/article/10.1007/s00122-023-04320-2

 

Back      Print      View: 229

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD