Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  79
 Total visitors :  7665857

Integrating GWAS and transcriptomics to identify genes involved in seed dormancy in rice
Wednesday, 2021/11/03 | 08:24:19

Jin ShiJianxin ShiWanqi Liang & Dabing Zhang

Theoretical and Applied Genetics November 2021; vol. 134: 3553–3562 

Key message

Several QTLs and genes responsible for seed dormancy were detected and SNP candidates were shown to cause changes in seed germination.

Abstract

Seed dormancy is a key agricultural trait to prevent pre-harvest sprouting in crop plants such as rice (Oryza sativa L.), wheat (Triticum aestivum), and barley (Hordeum vulgare L.). However, our knowledge of seed dormancy is hampered by the complexities of studying a trait that changes over time after seed harvest, and is complicated by interactions between phytohormones, seed coat components and the environment. Here, we have conducted a genome-wide association study using a panel of 311 natural accessions of cultivated rice, examining a total of 519,158 single nucleotide polymorphisms (SNPs). Eight quantitative trait loci (QTLs) were found to associate with seed dormancy in the whole panel and five in the Japonica and Indica subpanel; expression of candidate genes within 100 kb of each QTL was examined in two published, germination-specific transcriptomic datasets. Ten candidate genes, differentially expressed within the first four days post-imbibition, were identified. Five of these genes had previously been associated with awn length, heading date, yield, and spikelet length phenotypes. Two candidates were validated using Quantitative Reverse Transcription (qRT)-PCR. In addition, previously identified genes involved in hormone signaling during germination were found to be differentially expressed between a japonica and an indica line; SNPs in the promoter of Os9BGlu33 were associated with germination index, with qRT-PCR validation. Collectively, our results are useful for future characterization of seed dormancy mechanism and crop improvement, and suggest haplotypes for further analysis that may be of use to boost PHS resistance in rice.

 

See https://link.springer.com/article/10.1007/s00122-021-03911-1

Back      Print      View: 196

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD