Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  54
 Total visitors :  7657756

Metabolomic analysis of sheath blight disease of rice (Oryza sativa L.) induced by Rhizoctonia solani phytotoxin
Sunday, 2022/09/18 | 06:58:46

Wadzani Palnam DaudaVirendra Singh RanaAmolkumar U SolankeGopala KrishnanBishnu Maya BashyaRashmi AggarwalVeerubommu Shanmugam

 J Appl Microbiol.; 2022 Aug 11.  doi: 10.1111/jam.15776. Online ahead of print.

 

Figure: Rice shrath blight symptom.

Abstract

Aim: To understand the mechanism of necrosis incited by a host-selective phytotoxin designated as Rhizoctonia solani toxin (RST) identified to be a potential pathogenic factor of R. solani AG1 IA, causing sheath blight (ShB) of rice.

 

Methods and results: The metabolomic changes induced by the phytotoxic metabolite in a ShB susceptible rice cultivar were elucidated by gas chromatography-mass spectrometry analysis and compared with that of the pathogen to identify rice metabolites targeted by the phytotoxin. The profiles of about 29 metabolites with various physiological roles in rice plants have been identified worldwide. Unsupervised and supervised multivariate chemometrics (principal component analysis and partial least squares-discriminant analysis) and cluster (Heat maps) analyses were used to compare the metabolites obtained from chemical profiles of the treatments with sterile distilled water (SDW) control. The results indicated that the rice plant expressed more metabolites in response to the pathogen than the phytotoxin and was lowest in SDW control. The key metabolites expressed in rice in response to the treatments were investigated by the variable importance in projection (VIP) analysis using p < 0.05 VIP >15. The analysis identified 7 and 11 upregulating metabolites in the phytotoxin and the pathogen treatments, respectively, compared to the untreated control. Among the phytotoxin-treated and the pathogen inoculated samples, the phytotoxin-treated sample recorded upregulation of six metabolites, whereas nine metabolites were upregulated in the pathogen-inoculated samples. These upregulating metabolites are speculated for the necrotic symptoms characteristic to both the phytotoxin and pathogen. In this analysis, hexadecanoic acid and dotriacontane were highly expressed metabolites specific to the phytotoxin and pathogen-treated samples, respectively. Besides upregulation, the metabolites also have a VIP score of >1.5 and hence fulfilled the criteria of classifying them as reliable potential biomarkers. In the pathway analysis, hexadecanoic acid and dotriacontane were identified to be involved in several important biosynthetic pathways of rice, such as the biosynthesis of saturated fatty acid and unsaturated fatty acids cutin, suberin and wax.

 

Conclusions: The study concludes that though certain metabolites induced by the phytotoxin in the susceptible variety during necrosis shares with that of the pathogen, the identification of metabolites specific to the phytotoxin in comparison to the pathogenic and SDW controls indicated that the phytotoxin modulates the host metabolism differently and hence can be a potential pathogenicity factor of the ShB fungus.

 

Significance and impact of the study: Due to lack of knowledge on the pathway genes of RST and in the absence of an ShB-resistant variety, understanding differentially expressed metabolic changes induced in the susceptible variety by the phytotoxin in comparison to that of the pathogenic and uninoculated controls enables us to identify the key metabolite changes during the ShB infection. Such metabolomic changes can further be used to infer gene functions for exploitation in ShB control.

 

See https://pubmed.ncbi.nlm.nih.gov/35957552/

Back      Print      View: 185

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD