Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  6
 Total visitors :  7595569

Microbial denitrification dominates nitrate losses from forest ecosystems
Saturday, 2015/02/07 | 14:45:27

Yunting Fanga,b, Keisuke Kobab,1, Akiko Makabeb, Chieko Takahashib, Weixing Zhuc, Takahiro Hayashib, Azusa A. Hokarib, Rieko Urakawad, Edith Baia, Benjamin Z. Houltone, Dan Xia, Shasha Zhanga, Kayo Matsushitab, Ying Tua, Dongwei Liua, Feifei Zhua, Zhenyu Wanga, Guoyi Zhouf, Dexiang Cheng, Tomoko Makitab, Hiroto Todab, Xueyan Liub, Quansheng Chena,h, Deqiang Zhangf, Yide Lig, and Muneoki Yohb


Nitrogen (N) losses from terrestrial ecosystems can occur as inert forms or heat-trapping greenhouse gases, and via nitrate (NO3) leaching to drainage waters, which can contribute to eutrophication and anoxia in downstream ecosystems. Here, we use natural isotopes to demonstrate that microbial gaseous N production via denitrification is the dominant pathway of NO3 removal from forest ecosystems, with gaseous N losses that are up to ∼60-fold higher than those based on traditional techniques. Denitrification becomes less efficient compared with NO3 leaching in more N-polluted ecosystems, which has important implications for assessing the connections between terrestrial soils and downstream ecosystems under rising anthropogenic N deposition.


Denitrification removes fixed nitrogen (N) from the biosphere, thereby restricting the availability of this key limiting nutrient for terrestrial plant productivity. This microbially driven process has been exceedingly difficult to measure, however, given the large background of nitrogen gas (N2) in the atmosphere and vexing scaling issues associated with heterogeneous soil systems. Here, we use natural abundance of N and oxygen isotopes in nitrate (NO3) to examine dentrification rates across six forest sites in southern China and central Japan, which span temperate to tropical climates, as well as various stand ages and N deposition regimes. Our multiple stable isotope approach across soil to watershed scales shows that traditional techniques underestimate terrestrial denitrification fluxes by up to 98%, with annual losses of 5.6–30.1 kg of N per hectare via this gaseous pathway. These N export fluxes are up to sixfold higher than NO3 leaching, pointing to widespread dominance of denitrification in removing NO3 from forest ecosystems across a range of conditions. Further, we report that the loss of NO3 to denitrification decreased in comparison to leaching pathways in sites with the highest rates of anthropogenic N deposition.


See: http://www.pnas.org/content/112/5/1470.abstract.html?etoc

PNAS February 3, 2015; vol.112; no.5: 1470-1474

Back      Print      View: 760

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD