Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  30
 Total visitors :  7656592

Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L.
Thursday, 2022/11/24 | 08:34:09

Huiyan Zhao, Guoxia ShangNengwen YinSi ChenShulin ShenHaiyan JiangYunshan TangFujun SunYuhan ZhaoYongchao NiuZhi ZhaoLiang XuKun LuDezhi DuCunmin Qu & Jiana Li

Theoretical and Applied Genetics May 23 2022; vol. 135: 2083–2099

 

Figure: Brassica rapa L. (https://portal.wiktrop.org/species/show/45)

Key Message

Multi-omics analysis of the transcriptome, metabolome and genome identified major and minor loci and candidate genes for seed coat color and explored the mechanism of flavonoid metabolites biosynthesis in Brassica rapa.

Abstract

Yellow seed trait is considered an agronomically desirable trait with great potential for improving seed quality of Brassica crops. Mechanisms of the yellow seed trait are complex and not well understood. In this study, we performed an integrated metabolome, transcriptome and genome-wide association study (GWAS) on different B. rapa varieties to explore the mechanisms underlying the seed coat color formation. A total of 2,499 differentially expressed genes and 116 differential metabolites between yellow and black seeds with strong association with the flavonoid biosynthesis pathway was identified. In addition, 330 hub genes involved in the seed coat color formation, and the most significantly differential flavonoids biosynthesis were detected based on weighted gene co-expression network analysis. Metabolite GWAS analysis using the contents of 42 flavonoids in developing seeds of 159 B. rapa lines resulted in the identification of 1,626 quantitative trait nucleotides (QTNs) and 37 chromosomal intervals, including one major locus on chromosome A09. A combination of QTNs detection, transcriptome and functional analyses led to the identification of 241 candidate genes that were associated with different flavonoid metabolites. The flavonoid biosynthesis pathway in B. rapa was assembled based on the identified flavonoid metabolites and candidate genes. Furthermore, BrMYB111 members (BraA09g004490.3C and BraA06g034790.3C) involved in the biosynthesis of taxifolin were functionally analyzed in vitro. Our findings lay a foundation and provide a reference for systematically investigating the mechanism of seed coat color in B. rapa and in the other plants.

 

See https://link.springer.com/article/10.1007/s00122-022-04099-8

 

Back      Print      View: 223

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD