Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  33
 Total visitors :  7657433

OsCPD1 and OsCPD2 are functional brassinosteroid biosynthesis genes in rice
Monday, 2022/10/10 | 08:27:26

Huadong Zhan, Mingmin Lu, Qin Luo, Feng Tan, Ziwei Zhao, Mingqian Liu, Yubing He

 

Plant science; Volume 325, December 2022, 111482

https://doi.org/10.1016/j.plantsci.2022.111482

Abstract

CONSTITUTIVE PHOTOMORPHOGENIC DWARF (CPD), member of the CYP90A family of cytochrome P450 (CYP450) monooxygenase, is an essential component of brassinosteroids (BRs) biosynthesis pathway. Compared with a single CPD/CYP90A1 in Arabidopsis thaliana, two highly homologous CPD genes, OsCPD1/CYP90A3 and OsCPD2/CYP90A4, are present in rice genome. There is still no genetic evidence so far about the requirement of OsCPD1 and OsCPD2 in rice BR biosynthesis. In this study, we reported the functional characterization of OsCPD genes using CRISPR/Cas9 gene editing technology. The overall growth and development of oscpd1 and oscpd2 single knock-out mutants was indistinguishable from the wild-type, whereas, the oscpd1 oscpd2 double mutant displayed multiple and obvious BR-related defects. Cytological analyses further indicated the defective cell elongation in oscpd1 oscpd2 double mutant. The oscpd double mutants had a lower endogenous BR level and could be restored by the application of the brassinolide (BL). Moreover, overexpression of OsCPD1 and OsCPD2 led to a typical BR enhanced phenotype, with enlarged leaf angle and increased grain size. Taken together, our results provide direct genetic evidence that OsCPD1 and OsCPD2 play essential and redundant roles in maintenance of plant architecture by modulating BR biosynthesis in rice.

 

See https://www.sciencedirect.com/science/article/abs/pii/S0168945222003077

 

Back      Print      View: 207

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD