Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  48
 Total visitors :  7653332

Overexpression of OsGF14C enhances salinity tolerance but reduces blast resistance in rice
Saturday, 2023/06/17 | 07:20:19

Jingfang DongXuezhong LiYamei MaJianyuan YangJiansong ChenWu YangLian ZhouJian WangTiFeng YangShaohong ZhangJunliang ZhaoQing LiuLingyan ZhouXiaoyuan ZhuBin Liu.

Front Plant Sci.; 2023 Feb 10; 14:1098855. doi: 10.3389/fpls.2023.1098855.

Abstract

High-salinity and blast disease are two major stresses that cause dramatic yield loss in rice production. GF14 (14-3-3genes have been reported to play important role in biotic and abiotic stresses in plants. However, the roles of OsGF14C remain unknown. To understand the functions and regulatory mechanisms of OsGF14C in regulating salinity tolerance and blast resistance in rice, we have conducted OsGF14C-overexpressing transgenic experiments in the present study. Our results showed that overexpression of OsGF14C enhanced salinity tolerance but reduced blast resistance in rice. The enhanced salinity tolerance is related to the reduction of methylglyoxal and Na+ uptake instead of exclusion or compartmentation and the negative role of OsGF14C in blast resistance is associated with the suppression of OsGF14EOsGF14F and PR genes. Our results together with the results from the previous studies suggest that the lipoxygenase gene LOX2 which is regulated by OsGF14C may play roles in coordinating salinity tolerance and blast resistance in rice. The current study for the first time revealed the possible roles of OsGF14C in regulating salinity tolerance and blast resistance in rice, and laid down a foundation for further functional study and crosstalk regulation between salinity and blast resistance in rice.

 

See https://pubmed.ncbi.nlm.nih.gov/36844058/

 

Figure 1 The expression patterns of OsGF14C in responses to salinity stress and blast stress, respectively. The expression of OsGF14C during salinity stress and blast stress as assessed by quantitative real-time PCR at 0 h before treatment and 12 h, 24 h, 48 h after treatment. Error bars indicate the standard deviation (SD) from three biological replicates and ** indicates a statistically significant difference compared with 0 h treatment (t test, p < 0.01).

Back      Print      View: 233

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD