Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  29
 Total visitors :  7660321

Pathogen-mediated natural and manipulated population collapse in an invasive social insect
Friday, 2022/04/08 | 09:25:34

Edward G. LeBrunMelissa JonesRobert M. Plowes, and Lawrence E. Gilbert

PNAS March 28, 2022 | 119 (14) e2114558119

Significance

Invasive social insects are among the most damaging of invasive organisms and have proved universally intractable to biological control. Despite this, populations of some invasive social insects collapse from unknown causes. We report long-term studies demonstrating that infection by a microsporidian pathogen causes populations of a globally significant invasive ant to collapse to local extinction, providing a mechanistic understanding of a pervasive phenomenon in biological invasions: the collapse of established populations from endogenous factors. We apply this knowledge and successfully eliminate two large, introduced populations of these ants. More broadly, microsporidian pathogens should be evaluated for control of other supercolonial invasive social insects. Diagnosing the cause of unanticipated population collapse in invasive organisms can lead to applied solutions.

Abstract

Boom-bust population dynamics are a recurrent, widespread, and typically unexplained property of many species invasions. Declines also occur in invasive social insects from unknown causes. Nevertheless, social insects have proved intractable to biological control. Tawny crazy ants, an environmentally damaging invasive pest in several countries globally, are spreading in North America. Examining 15 local populations spanning 9 y, we document both the collapse of local populations of this ant in North America and a strong association of collapse with infection by the microsporidian pathogen, Myrmecomorba nylanderiae. Over the observation period, all longitudinally sampled local populations that harbored the pathogen declined, with 62% of these populations disappearing entirely. We test the causality of this relationship by introducing this pathogen into two local populations. At both sites, within 7 mo the pathogen was nearly universally prevalent, and within 2 y, tawny crazy ants were eliminated. In contrast, uninfected populations showed no tendency to decline over a similar period. Concurrent laboratory studies indicate that colony fragments died out because infected workers do not survive long enough to bridge the gap created by normal, winter cessation of immature ant production. Population-level collapse occurred because the pathogen spread faster than colony fragments declined, eliminating the density-dependent regulation seen with many pathogens. Invasive species beset by such pathogens may collapse if factors favoring transmission, like genetic homogeneity, high population density, or socially facilitated intragroup transmission, allow virulent pathogens to spread widely before disease impacts occur. These invasive species may be susceptible to boom-bust dynamics and pathogen-driven local extinction.

 

See https://www.pnas.org/doi/10.1073/pnas.2114558119

Back      Print      View: 234

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD