Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  8
 Total visitors :  7710306

Photosynthetic mechanisms underlying NaCl-induced salinity tolerance in rice (Oryza sativa)
Friday, 2024/06/07 | 08:11:58

Guanqiang ZuoJingxin HuoXiaohui YangWanqi MeiRui ZhangAaqil KhanNaijie FengDianfeng Zheng

BMC Plant Biol.; 2024 Jan 10; 24(1):41. doi: 10.1186/s12870-024-04723-3.


Background: Salinity stress is an environmental constraint that normally develops concurrently under field conditions, resulting in drastic limitation of rice plant growth and grain productivity. The objective of this study was to explore the alleviating effects of NaCl pre-treatment on rice seedlings as well as the salt tolerance mechanisms by evaluating morph-physiological traits.


Results: Variety Huanghuazhan, either soaked in distilled water or 25 mg/L Prohexadione calcium (Pro-Ca), were first hardened with varying concentrations of NaCl solutions (0 and 50 mM NaCl), and then subjected to varying degrees of salt stress (0 and 100 mM NaCl), indicated by S0, S1, S2 and S3, respectively. Growth analysis suggested that NaCl-pretreatment improved the root/shoot ratio in water-soaked rice plant at DAP 0. Data related to the reaction center density, photosynthetic electron transport efficiency, trapping efficiency were compared before (CK) using performance Index (PIabs). Compared to S2 (Pro-Ca-S2) treatment, PIabs did not show any difference with plants pre-treated with NaCl (S3 or Pro-Ca-S3). Rather than PIabs, significant difference was found in photosynthetic electron transport efficiency (ΨEo). The ΨEo value in Pro-S2 was significantly lowered as compared to Pro-S3 treatment at DAP 7, and the decrease rate was about 6.5%. Correlation analysis indicated leaf PIabs was weak correlated with plant biomass while the quantum yield for reduction of the PSI end electron acceptors, trapped energy flux per reaction center and PSII antenna size displayed strong positive correlation with biomass. Additional analysis revealed that 100 mM NaCl significantly reduced leaf linear electron flux under low-light conditions, regardless of whether seedlings had been pre-treated with 50 mM NaCl or not.


Conclusions: NaCl-induced salt tolerance was related to the robust photosynthetic machinery.


See https://pubmed.ncbi.nlm.nih.gov/38195408/

Fig. 2

Effect of NaCl pretreatment on light potential. * indicated the difference at 0.05 possibility level


Back      Print      View: 72

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD