Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  52
 Total visitors :  7659455

Physiological breeding for yield improvement in soybean: solar radiation interception-conversion, and harvest index
Tuesday, 2022/05/31 | 08:17:35

Miguel Angel LopezFabiana Freitas MoreiraAnthony HearstKeith Cherkauer & Katy Martin Rainey

Theoretical and Applied Genetics May 2022; vol. 135: 1477–1491

Key message

Efficiency of light interception, Radiation use efficiency and harvest index can be used as targets to improve grain yield potential in soybean.

Abstract

Grain yield (GY) production can be expressed as the result of three main efficiencies: light interception (Ei), radiation use (RUE), and harvest index (HI). Although dissecting GY through these three efficiencies is not entirely new, there is a lack of knowledge about the phenotypic variation, the genetic architecture, and the relative contribution of these three efficiencies on GY in soybean. This knowledge gap coupled with laborious phenotyping prevents the active consideration of these efficiencies into breeding programs. This study aims to reveal the phenotypic variation, heritability, genetic relationships, genetic architecture, and genomic prediction for Ei, RUE, and HI in soybean. We evaluated a maturity control panel of 383 Recombinant Inbred Lines (RILs) selected from the soybean nested association mapping (SoyNAM) population. Dry matter ground measured along with canopy coverage (CC) from UAS imagery were collected in three environments. Light interception was modeled through a logistic curve using CC as a proxy. The total above-ground biomass collected during the growing season and its respective cumulative light intercepted were used to derive RUE through linear models fitting. Additive-genetic correlations, genome-wide association (GWA) and whole-genome regressions (WGR) were performed to evaluate the relationship between traits, their association with genomic regions, and the feasibility of predicting these efficiencies with genomic information. Correlation analyses considered three groups: the entire data set, and the high- and low-yielding RILs to determine association as a function of the GY. Our results revealed moderate to high phenotypic variation for Ei, RUE, and HI with ranges of 8.5%, 1.1 g MJ−1, and 0.2, respectively. Additive-genetic correlation revealed a strong relationship of GY with HI and moderate with RUE and Ei when whole data set was considered, but negligible contribution of HI on GY when just the top 100 was analyzed. The GWA analyses showed that Ei is associated with three SNPs; two of them located on chromosome 7 and one on chromosome 11 with no previous quantitative trait loci (QTLs) reported for these regions. RUE is associated with four SNPs on chromosomes 1, 7, 11, and 18. Some of these QTLs are novel, while others are previously documented for plant architecture and chlorophyll content. Two SNPs positioned on chromosome 13 and 15 with previous QTLs reported for plant height and seed set, weight and abortion were associated with HI. WGR showed high predictive ability for Ei, RUE, and HI with maximum correlation ranging between 0.75 and 0.80. Future improvements in GY can be expected through strategies prioritizing Ei for short-term results when using high yielding germplasm and RUE for medium- and long-term outcomes. This work is a pioneer attempt to integrate traditional physiological traits into the breeding process in the context of physiological breeding.

 

See: https://link.springer.com/article/10.1007/s00122-022-04048-5

 

Back      Print      View: 188

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD