Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  63
 Total visitors :  7652503

Role of Brassica orphan gene BrLFM on leafy head formation in Chinese cabbage (Brassica rapa)
Saturday, 2023/08/12 | 08:57:57

Yonghui ZhaoShengnan HuangYun ZhangChong Tan & Hui Feng

Theoretical and Applied Genetics August 2023; vol. 136, Article number: 170

Key message

Brassica orphan gene BrFLM, identified by two allelic mutants, was involved in leafy head formation in Chinese cabbage.

Abstract

Leafy head formation is a unique agronomic trait of Chinese cabbage that determines its yield and quality. In our previous study, an EMS mutagenesis Chinese cabbage mutant library was constructed using the heading Chinese cabbage double haploid (DH) line FT as the wild-type. Here, we screened two extremely similar leafy head deficiency mutants lfm-1 and lfm-2 with geotropic growth leaves from the library to investigate the gene(s) related to leafy head formation. Reciprocal crossing results showed that these two mutants were allelic. We utilized lfm-1 to identify the mutant gene(s). Genetic analysis showed that the mutated trait was controlled by a single nuclear gene Brlfm. Mutmap analysis showed that Brlfm was located on chromosome A05, and BraA05g012440.3C or BraA05g021450.3C were the candidate gene. Kompetitive allele-specific PCR analysis eliminated BraA05g012440.3C from the candidates. Sanger sequencing identified an SNP from G to A at the 271st nucleotide on BraA05g021450.3C. The sequencing of lfm-2 detected another non-synonymous SNP (G to A) located at the 266st nucleotide on BraA05g021450.3C, which verified its function on leafy head formation. We blasted BraA05g021450.3C on database and found that it belongs to a Brassica orphan gene encoding an unknown 13.74 kDa protein, named BrLFM. Subcellular localization showed that BrLFM was located in the nucleus. These findings reveal that BrLFM is involved in leafy head formation in Chinese cabbage.

 

See https://link.springer.com/article/10.1007/s00122-023-04411-0

Back      Print      View: 301

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD