Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  57
 Total visitors :  7654540

Toward combining qualitative race-specific and quantitative race-nonspecific disease resistance by genomic selection
Friday, 2023/04/07 | 08:20:54

Sebastian MichelFranziska LöschenbergerChristian Ametz & Hermann Bürstmayr 

Key message

A novel genomic selection strategy offers the unique opportunity to develop qualitative race-specific resistant varieties that possess high levels of the more durable quantitative race-nonspecific resistance in their genetic background.

Abstract

Race-specific qualitative resistance genes (R-genes) are conferring complete resistance in many pathosystems, but are frequently overcome by new virulent pathogen races. Once the deployed R-genes are overcome, a wide variation of quantitative disease resistance (QDR) can be observed in a set of previously race-specific, i.e., completely resistant genotypes—a phenomenon known as “vertifolia effect.” This race-nonspecific QDR is considered to be more durable in the long term, but provides merely a partial protection against pathogens. This simulation study aimed to detangle race-specific R-gene-mediated resistance of pending selection candidates and the QDR in their genetic background by employing different genomic selection strategies. True breeding values that reflected performance data for rust resistance in wheat were simulated, and used in a recurrent genomic selection based on several prediction models and training population designs. Using training populations that were devoid of race-specific R-genes was thereby pivotal for an efficient improvement of QDR in the long term. Marker-assisted preselection for the presence of R-genes followed by a genomic prediction for accumulating the many small to medium effect loci underlying QDR in the genetic background of race-specific resistant genotypes appeared furthermore to be a promising approach to select simultaneously for both types of resistance. The practical application of such a knowledge-driven genomic breeding strategy offers the opportunity to develop varieties with multiple layers of resistance, which have the potential to prevent intolerable crop losses under epidemic situations by displaying a high level of QDR even when race-specific R-genes have been overcome by evolving pathogen populations.

 

See https://link.springer.com/article/10.1007/s00122-023-04312-2

 

 

Back      Print      View: 252

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD