Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  48
 Total visitors :  7663663

Transcriptional activation of rice CINNAMOYL-CoA REDUCTASE 10 by OsNAC5, contributes to drought tolerance by modulating lignin accumulation in roots
Wednesday, 2021/12/22 | 08:07:40

Seung Woon Bang,Seowon Choi,Xuanjun Jin,Se Eun Jung,Joon Weon Choi,Jun Sung Seo,Ju-Kon Kim

Plant Biotechnology Journal; 17 November 2021; https://doi.org/10.1111/pbi.13752

Summary

Drought is a common abiotic stress for terrestrial plants and often affects crop development and yield. Recent studies have suggested that lignin plays a crucial role in plant drought tolerance; however, the underlying molecular mechanisms are still largely unknown. Here, we report that the rice (Oryza sativa) gene CINNAMOYL-CoA REDUCTASE 10 (OsCCR10) is directly activated by the OsNAC5 transcription factor, which mediates drought tolerance through regulating lignin accumulation. CCR is the first committed enzyme in the monolignol synthesis pathway, and the expression of 26 CCR genes was observed to be induced in rice roots under drought. Subcellular localisation assays revealed that OsCCR10 is a catalytically active enzyme that is localised in the cytoplasm. The OsCCR10 transcript levels were found to increase in response to abiotic stresses, such as drought, high salinity, and abscisic acid (ABA), and transcripts were detected in roots at all developmental stages. In vitro enzyme activity and in vivo lignin composition assay suggested that OsCCR10 is involved in H- and G-lignin biosynthesis. Transgenic rice plants overexpressing OsCCR10 showed improved drought tolerance at the vegetative stages of growth, as well as higher photosynthetic efficiency, lower water loss rates, and higher lignin content in roots compared to non-transgenic (NT) controls. In contrast, CRISPR/Cas9-mediated OsCCR10 knock-out mutants exhibited reduced lignin accumulation in roots and less drought tolerance. Notably, transgenic rice plants with root-preferential overexpression of OsCCR10 exhibited higher grain yield than NT controls plants under field drought conditions, indicating that lignin biosynthesis mediated by OsCCR10 contributes to drought tolerance.

 

See https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.13752

Back      Print      View: 262

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD