Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  66
 Total visitors :  7652012

Transcriptome analysis during fruit developmental stages in durian (Durio zibethinus Murr.) var. D24
Sunday, 2023/09/17 | 06:29:42

Nurul Arneida HusinSadequr RahmanRohini KarunakaranSubhash Janardhan Bhore

Genet Mol Biol.; 2023 Jan 6; 45(4):e20210379. doi:10.1590/1678-4685-GMB-2021-0379.

Abstract

Durian (Durio zibethinus Murr.) fruits are famous for their unique aroma. This study analysed the Durian fruit transcriptome to discover the expression patterns of genes and to understand their regulation. Three developmental stages of Durian fruit, namely, early [90 days post-anthesis (DPA)], mature (120 DPA), and ripen (127 DPA), were studied. The Illumina HiSeq platform was used for sequencing. The sequence data were analysed using four different mapping aligners and statistical methods: CLC Genomic Workbench, HISAT2+DESeq2, Tophat+Cufflinks, and HISAT2+edgeR. The analyses showed that over 110 million clean reads were mapped to the Durian genome, yielding 19,976, 11,394, 17,833, and 24,351 differentially expressed genes during 90-127 days post-anthesis. Many identified differentially expressed genes were linked to the fruit ripening processes. The data analysis suggests that most genes with increased expression at the ripening stage were primarily involved in the metabolism of cofactors and vitamins, nucleotide metabolism, and carbohydrate metabolism. Significantly expressed genes from the young to mature stage were mainly associated with carbohydrate metabolism, amino acid metabolism, and cofactor and vitamin metabolism. The transcriptome data will serve as a foundation for understanding Durian fruit development-specific genes and could be helpful in fruit's trait improvement.

 

See https://pubmed.ncbi.nlm.nih.gov/36622241/

 

Figure 6: Hierarchical clustering analysis, heatmap, and key regulatory genes involved in Durian fruit softening development and ripening stage. Blue and orange bands indicate the high and low expression of genes, respectively. The color scale representing log2 fold change values is shown; young to mature stage (YSMS), young to ripening stage (YSRS), and mature to ripening stage (MSRS).

Back      Print      View: 187

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD