Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  35
 Total visitors :  7658367

Transcriptome analysis of a near-isogenic line and its recurrent parent reveals the role of Pup1 QTL in phosphorus deficiency tolerance of rice at tillering stage
Friday, 2022/07/22 | 08:19:22

Suresh KumarAnuradha AgrawalKarishma SeemSantosh KumarK K Vinod,  Trilochan Mohapatra

Plant Mol Biol. ; 2022 May;109(1-2):29-50.  doi: 10.1007/s11103-022-01254-z.

Abstract

Phosphorus (P) is essential for cellular processes like respiration, photosynthesis, biosynthesis of membrane phospholipids, etc. To cope with P deficiency stress, plants adopt reprograming of the expression of genes involved in different metabolic/signaling pathways for survival, growth, and development. Plants use transcriptional, post-transcriptional, and/or post-translational machinery to achieve P homeostasis. Several transcription factors (TFs), miRNAs, and P transporters play important roles in P deficiency tolerance; however, the underlying mechanisms responsible for P deficiency tolerance remain poorly understood. Studies on P starvation/deficiency responses in plants at early (seedling) stage of growth have been reported but only a few of them focused on molecular responses of the plant at advanced (tillering or reproductive) stage of growth. To decipher the strategies adopted by rice at tillering stage under P deficiency stress, a pair of contrasting genotypes [Pusa-44 (a high-yielding, P deficiency sensitive cultivar) and its near-isogenic line (NIL-23, P deficiency tolerant) for Pup1 QTL] was used for morphophysiological, biochemical, and molecular analyses. Comparative analyses of shoot and root tissues from 45-day-old plants grown hydroponically under P sufficient (16 ppm) or P deficient (4 ppm) medium confirmed some of the known morphophysiological responses. Moreover, RNA-seq analysis revealed the important roles of phosphate transporters, TFs, auxin-responsive proteins, modulation in the cell wall, fatty acid metabolism, and chromatin architecture/epigenetic modifications in providing P deficiency tolerance to NIL-23, which were brought in due to the introgression of the Pup1 QTL in Pusa-44. This study provides insights into the molecular functions of Pup1 for P deficiency tolerance, which might be utilized to improve P-use efficiency of rice for better productivity in P deficient soils. KEY MESSAGE: Introgression of Pup1 QTL in high-yielding rice cultivar modulates mainly phosphate transporters, TFs, auxin-responsive proteins, cell wall structure, fatty acid metabolism, and chromatin architecture/epigenetic modifications at tillering stage of growth under phosphorus deficiency stress.

 

See https://pubmed.ncbi.nlm.nih.gov/35275352/

 

Back      Print      View: 226

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD