Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  5
 Total visitors :  8616426

Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed
Sunday, 2022/11/27 | 07:34:24

Qingdong JinGengdong GaoChaocheng GuoTaihua YangGe LiJurong SongNa ZhengShuai YinLicong YiZhen LiXianhong GeGraham J. KingJing Wang & Guangsheng Zhou

Theoretical and Applied Genetics October 2022; vol. 135: 3469–3483

Key message

We identified two new transposon insertions within the promoter of BnaFT.A2 in addition to an existing 288 bp MITE within the second intron. Each insertion event corresponds to a distinct BnaFT.A2 haplotype and is closely associated with established crop seasonal ecotypes.

Abstract

Florigen, encoded by FLOWERING LOCUS T (FT), plays key roles not only as a flowering hormone, but also a universal growth factor affecting several aspects of plant architecture. In rapeseed, BnaFT.A2 has been revealed as one of the major loci associated with flowering time and different ecotypes. However, it is unclear how allelic variations of BnaFT.A2 affect its function in flowering time regulation and beyond. In this study, we confirmed an existing 288 bp miniature inverted-repeat transposable element (MITE) insertion within the second intron and identified two new insertions within the promoter of BnaFT.A2—a 3971 bp CACTA and a 1079 bp Helitron. Each insertion event corresponds to a distinct BnaFT.A2 haplotype and is closely associated with established crop seasonal ecotypes. These alleles have similar tissue-specific expression patterns but discrete transcriptional patterns tightly associated with rapeseed flowering time and ecotype. RNAi lines and mutants of BnaFT.A2 flowered significantly later than controls. Differentially expressed genes (DEGs), identified in transcriptomic profiling of seedling leaves from two loss-of-function mutants (Bnaft.a2-L1 and Bnaft.a2-L2) compared with controls, indicated significant enrichment for hormone metabolic genes and roles related to plant cell wall synthesis and photosynthesis. Plants with loss-of-function BnaFT.A2 had smaller leaves and lower net photosynthetic rate compared to controls. These findings not only further clarify the genetic basis of flowering time variation and ecotype formation in B. napus, but also provide an additional toolbox for genetic improvement of seasonal adaptation and production.

 

See https://link.springer.com/article/10.1007/s00122-022-04193-x

Back      Print      View: 263

[ Other News ]___________________________________________________
  • Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia
  • Increasing plant group productivity through latent genetic variation for cooperation
  • THP9 enhances seed protein content and nitrogen-use efficiency in maize
  • The role of soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing
  • Progress in Soybean Genetic Transformation Over the Last Decade
  • Climate change challenges plant breeding
  • Breeding for disease resistance in soybean: a global perspective
  • The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids
  • Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height
  • Response of Southeast Asian rice root architecture and anatomy phenotypes to drought stress
  • Root Pulling Force Across Drought in Maize Reveals Genotype by Environment Interactions and Candidate Genes
  • Root hair-specific transcriptome reveals response to low phosphorus in Cicer arietinum
  • Protocol for targeted modification of the rice genome using base editing
  • Understanding the Dynamics of Blast Resistance in Rice- Magnaporthe oryzae Interactions
  • Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L.
  • Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR
  • Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing
  • Natural allelic variation of GmST05 controlling seed size and quality in soybean
  • Cassava mosaic disease and its management in Southeast Asia
  • Digital Droplet PCR in Hematologic Malignancies: A New Useful Molecular Tool

 

Designed & Powered by WEBSO CO.,LTD