Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  58
 Total visitors :  7652027

Two decades of harnessing standing genetic variation for physiological traits to improve drought tolerance in maize
Saturday, 2023/09/09 | 06:40:31

Carlos D MessinaCarla GhoGraeme L HammerTom TangMark Cooper

J Exp Bot.; 2023 Sep 2; 74(16):4847-4861. doi: 10.1093/jxb/erad231.

Abstract

We review approaches to maize breeding for improved drought tolerance during flowering and grain filling in the central and western US corn belt and place our findings in the context of results from public breeding. Here we show that after two decades of dedicated breeding efforts, the rate of crop improvement under drought increased from 6.2 g m-2 year-1 to 7.5 g m-2 year-1, closing the genetic gain gap with respect to the 8.6 g m-2 year-1 observed under water-sufficient conditions. The improvement relative to the long-term genetic gain was possible by harnessing favourable alleles for physiological traits available in the reference population of genotypes. Experimentation in managed stress environments that maximized the genetic correlation with target environments was key for breeders to identify and select for these alleles. We also show that the embedding of physiological understanding within genomic selection methods via crop growth models can hasten genetic gain under drought. We estimate a prediction accuracy differential (Δr) above current prediction approaches of ~30% (Δr=0.11, r=0.38), which increases with increasing complexity of the trait environment system as estimated by Shannon information theory. We propose this framework to inform breeding strategies for drought stress across geographies and crops.

 

See https://pubmed.ncbi.nlm.nih.gov/37354091/

 

Fig. 6. Simulated yields define theoretical maize yield response to evapotranspiration for 80 and 99 percentiles (A, lines), maize yield variability for hybrids with contrasting response to water deficit across a range of evapotranspiration (B), and spatial distribution of yields for 2 years with different drought patterns at 30 × 30 km resolution (C). Yield observations shown in (A) are for a single cross-hybrid grown at three locations in the western US corn belt for maize grown under rainfed and irrigated conditions, and under normal (filled symbols) and increased plant population by 1 plants m–2 (open symbols). Data are from Messina et al. (2020a).

Back      Print      View: 209

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD