Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  61
 Total visitors :  7656116

Understanding complex genetic architecture of rice grain weight through QTL-meta analysis and candidate gene identification
Sunday, 2023/01/01 | 07:22:41

C AnilkumarRameswar Prasad SahT P Muhammed AzharudheenSasmita BeheraNamita SinghNitish Ranjan PrakashN C SunithaB N DevannaB C MarndiB C PatraSunil Kumar Nair

Sci Rep.; 2022 Aug 16;12(1):13832.  doi: 10.1038/s41598-022-17402-w.

Abstract

Quantitative trait loci (QTL) for rice grain weight identified using bi-parental populations in various environments were found inconsistent and have a modest role in marker assisted breeding and map-based cloning programs. Thus, the identification of a consistent consensus QTL region across populations is critical to deploy in marker aided breeding programs. Using the QTL meta-analysis technique, we collated rice grain weight QTL information from numerous studies done across populations and in diverse environments to find constitutive QTL for grain weight. Using information from 114 original QTL in meta-analysis, we discovered three significant Meta-QTL (MQTL) for grain weight on chromosome 3. According to gene ontology, these three MQTL have 179 genes, 25 of which have roles in developmental functions. Amino acid sequence BLAST of these genes indicated their orthologue conservation among core cereals with similar functions. MQTL3.1 includes the OsAPX1, PDIL, SAUR, and OsASN1 genes, which are involved in grain development and have been discovered to play a key role in asparagine biosynthesis and metabolism, which is crucial for source-sink regulation. Five potential candidate genes were identified and their expression analysis indicated a significant role in early grain development. The gene sequence information retrieved from the 3 K rice genome project revealed the deletion of six bases coding for serine and alanine in the last exon of OsASN1 led to an interruption in the synthesis of α-helix of the protein, which negatively affected the asparagine biosynthesis pathway in the low grain weight genotypes. Further, the MQTL3.1 was validated using linked marker RM7197 on a set of genotypes with extreme phenotypes. MQTL that have been identified and validated in our study have significant scope in MAS breeding and map-based cloning programs for improving rice grain weight.

 

See: https://pubmed.ncbi.nlm.nih.gov/35974066/

 

Figure 2: Distribution of reported grain weight QTL on all 12 rice chromosomes (name of the first author of original report is used as prefix while naming the QTL in this study).

Back      Print      View: 123

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD