Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  4
 Total visitors :  7427016

Unveiling the crucial role of soil microorganisms in carbon cycling: A review
Sunday, 2024/02/18 | 07:09:13

Haowei WuHuiling CuiChenxi FuRan LiFengyuan QiZhelun LiuGuang YangKeqing XiaoMin Qiao.

Sci Total Environ.; 2024 Jan 20: 909:168627. doi: 10.1016/j.scitotenv.2023.168627.17.


Figure: Carbon turnover is achieved in plant-soil-microorganism.



Soil microorganisms, by actively participating in the decomposition and transformation of organic matter through diverse metabolic pathways, play a pivotal role in carbon cycling within soil systems and contribute to the stabilization of organic carbon, thereby influencing soil carbon storage and turnover. Investigating the processes, mechanisms, and driving factors of soil microbial carbon cycling is crucial for understanding the functionality of terrestrial carbon sinks and effectively addressing climate change. This review comprehensively discusses the role of soil microorganisms in soil carbon cycling from three perspectives: metabolic pathways, microbial communities, and environmental influences. It elucidates the roles of different microbial species in carbon cycling and highlights the impact of microbial interactions and environmental factors on carbon cycling. Through the synthesis of 2171 relevant papers in the Web of Science Core database, we elucidated the ecological community structure, activity, and assembly mechanisms of soil microorganisms crucial to the soil carbon cycle that have been widely analyzed. The integration of soil microbial carbon cycle and its driving factors are vital for accurately predicting and modeling biogeochemical cycles and effectively addressing the challenges posed by global climate change. Such integration is vital for accurately predicting and modeling biogeochemical cycles and effectively addressing the challenges posed by global climate change.


See https://pubmed.ncbi.nlm.nih.gov/37977383/

Back      Print      View: 122

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD