Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  13
 Total visitors :  7844893

Cassava molecular genetics and genomics for enhanced resistance to diseases and pests
Thursday, 2024/08/22 | 08:47:08

Valentine Otang NtuiJaindra Nath TripathiSamwel Muiruri KariukiLeena Tripathi

Mol Plant Pathol.; 2024 Feb; 25(2):e13432. doi: 10.1111/mpp.13432.

Abstract

Cassava (Manihot esculenta) is one of the most important sources of dietary calories in the tropics, playing a central role in food and economic security for smallholder farmers. Cassava production is highly constrained by several pests and diseases, mostly cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). These diseases cause significant yield losses, affecting food security and the livelihoods of smallholder farmers. Developing resistant varieties is a good way of increasing cassava productivity. Although some levels of resistance have been developed for some of these diseases, there is observed breakdown in resistance for some diseases, such as CMD. A frequent re-evaluation of existing disease resistance traits is required to make sure they are still able to withstand the pressure associated with pest and pathogen evolution. Modern breeding approaches such as genomic-assisted selection in addition to biotechnology techniques like classical genetic engineering or genome editing can accelerate the development of pest- and disease-resistant cassava varieties. This article summarizes current developments and discusses the potential of using molecular genetics and genomics to produce cassava varieties resistant to diseases and pests.

 

See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788594/

 

Figure 3: Cassava leaves: (a) leaves showing symptoms of cassava mosaic disease and (b) healthy leaves.

Figure 1: Major cassava production areas in the world. The green bars represent the top six cassava‐producing countries

 

Back      Print      View: 20

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD