Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  30
 Total visitors :  7664804

De novo germline mutation in the dual specificity phosphatase 10 gene accelerates autoimmune diabetes
Friday, 2021/11/26 | 07:15:31

 Anne-Perrine Foray, Sophie Candon, Sara Hildebrand, Cindy Marquet, Fabrice Valette, Coralie Pecquet, Sebastien Lemoine, Francina Langa-Vives, Michael Dumas, Peipei Hu, Pere Santamaria, Sylvaine You, Stephen Lyon, Lindsay Scott, Chun Hui Bu, Tao Wang, Darui Xu, Eva Marie Y. Moresco, Claudio Scazzocchio, Jean-François Bach, Bruce Beutler, and Lucienne Chatenoud

 

PNAS November 23, 2021 118 (47) e2112032118

Significance

The vast majority of autoimmune diseases are polygenic, and causal loci uncovered by genetic-mapping studies explain only a minority of the heritable contribution to trait variation. Multiple explanations for this missing heritability include rare meaningful variants, rare copy number variations or deletions, epistasis, epigenetics, disease heterogeneity, and rare or infrequent variants that segregate within individual families (even within monozygotic twins). Here we demonstrate that experimental models of spontaneous autoimmune diseases may be invaluable tools to map rare germline variants impacting disease susceptibility traits. We identified a variant of the dual-specificity phosphatase 10 encoding gene that accelerates disease in an autoimmune type 1 diabetes model, the nonobese diabetic mouse.

Abstract

Insulin-dependent or type 1 diabetes (T1D) is a polygenic autoimmune disease. In humans, more than 60 loci carrying common variants that confer disease susceptibility have been identified by genome-wide association studies, with a low individual risk contribution for most variants excepting those of the major histocompatibility complex (MHC) region (40 to 50% of risk); hence the importance of missing heritability due in part to rare variants. Nonobese diabetic (NOD) mice recapitulate major features of the human disease including genetic aspects with a key role for the MHC haplotype and a series of Idd loci. Here we mapped in NOD mice rare variants arising from genetic drift and significantly impacting disease risk. To that aim we established by selective breeding two sublines of NOD mice from our inbred NOD/Nck colony exhibiting a significant difference in T1D incidence. Whole-genome sequencing of high (H)- and low (L)-incidence sublines (NOD/NckH and NOD/NckL) revealed a limited number of subline-specific variants. Treating age of diabetes onset as a quantitative trait in automated meiotic mapping (AMM), enhanced susceptibility in NOD/NckH mice was unambiguously attributed to a recessive missense mutation of Dusp10, which encodes a dual specificity phosphatase. The causative effect of the mutation was verified by targeting Dusp10 with CRISPR-Cas9 in NOD/NckL mice, a manipulation that significantly increased disease incidence. The Dusp10 mutation resulted in islet cell down-regulation of type I interferon signature genes, which may exert protective effects against autoimmune aggression. De novo mutations akin to rare human susceptibility variants can alter the T1D phenotype.

 

See: https://www.pnas.org/content/118/47/e2112032118

 

Fig. 1.

Diabetes incidence in sublines of the NOD/Nck strain. (A) Incidence of T1D at generation 3 in five distinct sublines (A to E) established from the NOD/Nck strain by brother–sister mating of mice within individual litters. For further studies we concentrated on sublines A and B, which we named NOD/NckL (for low incidence) and NOD/NckH (for high incidence). (B) Incidence of T1D in NOD/NckH and NOD/NckL male mice followed from generation 3 up to generation 34. ****P < 0.0001, ***P < 0.001, *P < 0.05. (C) Incidence of T1D in NOD/NckH and NOD/NckL male mice derived from embryos frozen at generation 7 and revitalized. Actuarial survival curves were compared using the log-rank (Mantel–Cox) statistical test.

Back      Print      View: 297

[ Other News ]___________________________________________________
  • Auxin depletion from leaf primordia contributes to organ patterning
  • Phytochrome controls alternative splicing to mediate light responses in Arabidopsis
  • Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year
  • Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655
  • Factor analytic mixed models for the provision of grower information from national crop variety testing programs
  • Exploring the areas of applicability of whole genome prediction methods for Asian rice (Oryza sativa L.)
  • Investigation of terpene diversification across multiple sequenced plant genomes
  • Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism
  • Effect of the ahas Transgene on Biological Nitrogen Fixation and Yield of Soybean
  • Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity
  • A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome
  • High-Resolution Linkage Map and Chromosome-Scale Genome Assembly for Cassava (Manihot esculenta Crantz) from 10 Populations
  • Analysis of the Transcriptome of Banana Fruit during Ripening
  • Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1
  • Salt Tolerant Gene in Soybean Identified
  • Climate change decouples oceanic primary and export productivity and organic carbon burial
  • Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus
  • 5-Hydroxymethylcytosine Is Not Present in Appreciable Quantities in Arabidopsis DNA
  • Fine mapping of the qLOP2 and qPSR2 1 loci associated with chilling stress tolerance of wild rice seedlings
  • Natural diversity in daily rhythms of gene expression contributes to phenotypic variation

 

Designed & Powered by WEBSO CO.,LTD