Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  61
 Total visitors :  7655775

Identification and haplotype analysis of SiCHLI: a gene for yellow–green seedling as morphological marker to accelerate foxtail millet (Setaria italica) hybrid breeding
Saturday, 2023/02/11 | 08:35:13

Hongkai LiangQiang HeHui ZhangHui ZhiSha TangHailong WangQiang MengGuanqing JiaJinhua Chang & Xianmin Diao

Theoretical and Applied Genetics January 2023; vol. 136, Article number: 1 (2023) 

Key message

We cloned and developed functional markers for the SiCHLI gene, which is responsible for the yellow–green color of leaves in foxtail millet, a frequently used marker trait in the hybrid breeding of foxtail millet by using bulked segregant analysis sequencing and haplotype analysis on the F2 and core-collected nature populations.

Abstract

The color of leaves has been widely used as a marker for the hybrid breeding of foxtail millet; however, few related gene have been cloned to date. Here, we used two F2 populations generated from crosses between the highly male-sterile material 125A with yellow–green leaves, and CG58 and S410, which have green leaves, to identify the genes underlying the yellow–green color of the leaves of foxtail millet. The leaves of 125A seedlings were yellow–green, but they became green at the heading stage. The content of chlorophyll a and chlorophyll b was lower, the number of thylakoid lamellae and grana was reduced, and the chloroplasts was more rounded in 125A than in S410 at the yellow–green leaf stage; however, no differences were observed between 125A and S410 in these traits and photosynthetic at the heading stage. Bulked segregant analysis and map-based cloning revealed that the SiCHLI gene is responsible for the leaf colors of 125A. A nonsynonymous mutation (C/T) in exon 3 causes yellow–green leaves in 125A at the seedling stage. Haplotype analysis of the SiCHLI gene in 596 core collected accessions revealed a new haplotype associated with high photosynthetic metabolic potential at the heading and mature stages, which could be used to enhance sterile lines with yellow–green leaves. We developed a functional marker that will facilitate the identification of foxtail millet accessions with the different types of yellow–green leaves. Generally, our study provides new genetic resources to guide the future marker-assisted or target-base editing in foxtail millet hybrid breeding.

 

See https://link.springer.com/article/10.1007/s00122-023-04309-x

 

Back      Print      View: 127

[ Other News ]___________________________________________________
  • Auxin depletion from leaf primordia contributes to organ patterning
  • Phytochrome controls alternative splicing to mediate light responses in Arabidopsis
  • Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year
  • Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655
  • Factor analytic mixed models for the provision of grower information from national crop variety testing programs
  • Exploring the areas of applicability of whole genome prediction methods for Asian rice (Oryza sativa L.)
  • Investigation of terpene diversification across multiple sequenced plant genomes
  • Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism
  • Effect of the ahas Transgene on Biological Nitrogen Fixation and Yield of Soybean
  • Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity
  • A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome
  • High-Resolution Linkage Map and Chromosome-Scale Genome Assembly for Cassava (Manihot esculenta Crantz) from 10 Populations
  • Analysis of the Transcriptome of Banana Fruit during Ripening
  • Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1
  • Salt Tolerant Gene in Soybean Identified
  • Climate change decouples oceanic primary and export productivity and organic carbon burial
  • Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus
  • 5-Hydroxymethylcytosine Is Not Present in Appreciable Quantities in Arabidopsis DNA
  • Fine mapping of the qLOP2 and qPSR2 1 loci associated with chilling stress tolerance of wild rice seedlings
  • Natural diversity in daily rhythms of gene expression contributes to phenotypic variation

 

Designed & Powered by WEBSO CO.,LTD