Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  55
 Total visitors :  7657171

Mutation in BrGGL7 gene encoding a GDSL esterase / lipase causes male sterility in Chinese cabbage (Brassica rapa L. ssp. pekinensis)
Saturday, 2022/10/15 | 07:15:54

Ying ZhaoShengnan HuangJiaqi ZouShiyao DongNan Wang & Hui Feng

Theoretical and Applied Genetics October 2022; vol. 135: 3323–3335

Key message

MutMap and KASP analyses revealed that the BrGGL7 gene is responsible for the male-sterile trait of ftms1 in Chinese cabbage, with functional verification in Arabidopsis.

Abstract

The application of a male-sterile line is an ideal approach of hybrid seed production in Chinese cabbage. In this study, we obtained a male-sterile mutant (ftms1) from the double haploid line ‘FT’ using ethyl methane sulfonate (EMS) mutagenesis. The mutant was completely sterile due to abnormal enlargement and vacuolization of the tapetum cells. A single recessive nuclear gene was found to control male sterility in the mutant, while MutMap and KASP analyses identified BraA05g022470.3C (BrGGL7), which encodes a GDSL esterase / lipase, as the candidate mutant gene. A single nucleotide substitution from C to T occurred within the domain of BrGGL7 in ftms1, resulting in premature translation termination in the fourth exon. Meanwhile, qRT-PCR analysis indicated that BrGGL7 was prominently expressed in the anthers, and expression was greater in the wild-type ‘FT’ than ftms1. Genetic complementation of the orthologous Arabidopsis ggl7 mutant further confirmed the role of BrGGL7 in pollen development. These findings suggest that BrGGL7 plays a fundamental role in pollen formation, providing important insight into the molecular mechanisms underlying male sterility in Chinese cabbage.

 

See https://link.springer.com/article/10.1007/s00122-022-04165-1

Back      Print      View: 166

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD