Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  11
 Total visitors :  7478095


Thursday, 2024/04/04 | 08:46:06

Throughout evolution, arboviruses have developed various strategies to counteract the host’s innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates.

Wednesday, 2024/04/03 | 08:24:09

Drought is one of the major environmental factors which limits soybean yield. Slow wilting is a promising trait that can enhance drought resilience in soybean without additional production costs. Recently, a Korean soybean cultivar SS2-2 was reported to exhibit slow wilting at the early vegetative stages. To find genetic loci responsible for slow wilting, in this study, quantitative trait loci (QTL) analysis was conducted using a recombinant inbred line (RIL) population derived from crossing between Taekwangkong (fast-wilting) and SS2-2 (slow-wilting).

Tuesday, 2024/04/02 | 08:35:55

Unlike genetic modification, genome editing (GE) technologies can be used to yield transgene-free outcomes, which is an important aspect in promoting consumer acceptance of GE foods. In addition, with the advent of the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, which is known to be exceptional among genome editing tools, GE has numerous potential applications in plant breeding technology to create diverse desirable traits,

Monday, 2024/04/01 | 08:40:32

Given that rice serves as a crucial staple food for a significant portion of the global population and with the increasing number of individuals being diagnosed with diabetes, a primary objective in genetic improvement is to identify and cultivate low Glycemic Index (GI) varieties. This must be done while ensuring the preservation of grain quality. 25 Italian rice genotypes were characterized calculating their GI "in vivo" and, together with other 29 Italian and non-Italian genotypes they were studied to evaluate the grain inner structure through Field Emission Scanning Electron Microscopy (FESEM) technique.

 

Sunday, 2024/03/31 | 07:51:39

Rice blast is one of the most devastating diseases, causing a significant reduction in global rice production. Developing and utilizing resistant varieties has proven to be the most efficient and cost-effective approach to control blasts. However, due to environmental pressure and intense pathogenic selection, resistance has rapidly broken down, and more durable resistance genes are being discovered. In this paper, a novel wall-associated kinase (WAK) gene, Pb4, which confers resistance to rice blast, was identified through a genome-wide association study (GWAS) utilizing 249 rice accessions. Pb4 comprises an N-terminal signal peptide, extracellular GUB domain, EGF domain, EGF-Ca2+ domain, and intracellular Ser/Thr protein kinase domain.

Saturday, 2024/03/30 | 08:53:57

Sugarcane orange rust (SOR) is a threatening emerging disease in many sugarcane industries worldwide. Improving the genetic resistance of commercial cultivars remains the most promising solution to control this disease. In this study, an association panel of 568 modern interspecific sugarcane hybrids (Saccharum officinarum x S. spontaneum) from Réunion’s breeding program was evaluated for its resistance to SOR under natural conditions of infection. Two genome-wide association studies (GWAS) were conducted between disease reactions and 183,842 single nucleotide polymorphism (SNP) markers obtained by targeted genotyping-by-sequencing.

Friday, 2024/03/29 | 08:30:05

In diploid potato the production of unreduced gametes with a diploid (2n) rather than a haploid (n) number of chromosomes has been widely reported. Besides their evolutionary important role in sexual polyploidisation, unreduced gametes also have a practical value for potato breeding as a bridge between diploid and tetraploid germplasm. Although early articles argued for a monogenic recessive inheritance, the genetic basis of unreduced pollen production in potato has remained elusive.

Thursday, 2024/03/28 | 06:05:21

By releasing specialized metabolites, plants modify their environment. Whether and how specialized metabolites protect plants against toxic levels of trace elements is not well understood. We evaluated whether benzoxazinoids, which are released into the soil by major cereals, can confer protection against arsenic toxicity. Benzoxazinoid-producing maize plants performed better in arsenic-contaminated soils than benzoxazinoid-deficient mutants in the greenhouse and the field. Adding benzoxazinoids to the soil restored the protective effect, and the effect persisted to the next crop generation via positive plant–soil feedback.

Wednesday, 2024/03/27 | 05:46:37

Advances in high-throughput phenotyping technology have made it possible to obtain time-series plant growth data in field trials, enabling genotype-by-environment interaction (G × E) modeling of plant growth. Although the reaction norm is an effective method for quantitatively evaluating G × E and has been implemented in genomic prediction models, no reaction norm models have been applied to plant growth data. Here, we propose a novel reaction norm model for plant growth using spline and random forest models, in which daily growth is explained by environmental factors one day prior.

Wednesday, 2024/03/27 | 05:43:35

The use of tomato rootstocks has helped to alleviate the soaring abiotic stresses provoked by the adverse effects of climate change. Lateral and adventitious roots can improve topsoil exploration and nutrient uptake, shoot biomass and resulting overall yield. It is essential to understand the genetic basis of root structure development and how lateral and adventitious roots are produced. Existing mutant lines with specific root phenotypes are an excellent resource to analyse and comprehend the molecular basis of root developmental traits.

 

Designed & Powered by WEBSO CO.,LTD