Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  1
 Total visitors :  5913862

Researchers find genetic mechanism for controlling the shape of fruits, vegetables, and grains
Saturday, 2018/11/17 | 07:28:23

Scientists from the University of Georgia discovered a genetic mechanism that governs the shape of fruits, vegetables, and grains. The results of the study are published in Nature Communications.


"We may be able to explain the shapes of many fruits and vegetables through a similar mechanism to the one we described in tomatoes," said Esther van der Knaap, professor of horticulture and leader of the study. "We found that in tomatoes, plant cells in the fruit divide in a column or in a row and that will determine their shape," van der Knaap said. "We also found that this mechanism is likely the same in several other plant species: melons, cucumbers, potatoes. We've even been able to go as far as finding that the same mechanism controls the shape of rice grains as well as leaves."


In her previous study, van der Knaap and team found that the genetic sequences responsible for controlling cell division or cell size. Each of the genes gives a hint about how the fruits are formed wherein some affect the size and shape of the fruit at the later stages of development, just before the fruit is ripening, while the others affect the shape and size much earlier even before flowering. 


In her latest study, van der Knaap found similar sets of shape-control genes in other plants. In potato, the gene that controls the tuber shape is found in the same location in the genome as the gene that controls tomato fruit shape. In other plants, the shape-control genes may not in the same place, but it is perceived they act in the same manner, controlling the horizontal or vertical structure in cell division.


The findings about genetic control of shape are vital not just for plant breeders, but also for better understanding of plant evolution and development.


For more information, visit the van der Knaap lab website.


Figure: Tomato domestication from wild ancestors to cultivated types

Back      Print      View: 794

[ Other News ]___________________________________________________
  • Beyond genes: Protein atlas scores nitrogen fixing duet
  • 2016 Borlaug CAST Communication Award Goes to Dr. Kevin Folta
  • FAO and NEPAD team up to boost rural youth employment in Benin, Cameroon, Malawi and Niger
  • Timely seed distributions in Ethiopia boost crop yields, strengthen communities’ resilience
  • Parliaments must work together in the final stretch against hunger
  • Empowering women farmers in the polder communities of Bangladesh
  • Depression: let’s talk
  • As APEC Concludes, CIP’s Food Security and Climate Smart Agriculture on Full Display
  • CIAT directly engages with the European Cocoa Industry
  • Breeding tool plays a key role in program planning
  • FAO: Transform Agriculture to Address Global Challenges
  • Uganda Holds Banana Research Training for African Scientists and Biotechnology Regulators
  • US Congress Ratifies Historic Global Food Security Treaty
  • Fruit Fly`s Genetic Code Revealed
  • Seminar at EU Parliament Tackles GM Crops Concerns
  • JICA and IRRI ignites a “seed revolution” for African and Asian farmers
  • OsABCG26 Vital in Anther Cuticle and Pollen Exine Formation in Rice
  • Akira Tanaka, IRRI’s first physiologist, passes away
  • WHO calls for immediate safe evacuation of the sick and wounded from conflict areas
  • Farmer Field School in Tonga continues to break new ground in the Pacific for training young farmers


Designed & Powered by WEBSO CO.,LTD