Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  12
 Total visitors :  8923717

Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance
Saturday, 2022/07/23 | 06:44:26

Hui ZhaoZixuan LiYayun WangJiayi WangMinggang XiaoHai LiuRuidang QuanHaiwen ZhangRongfeng HuangLi ZhuZhijin Zhang.

Plant Biotechnol J.; 2022 Mar; 20(3):468-484.  doi: 10.1111/pbi.13729.

Abstract

Cell wall polysaccharide biosynthesis enzymes play important roles in plant growth, development and stress responses. The functions of cell wall polysaccharide synthesis enzymes in plant growth and development have been well studied. In contrast, their roles in plant responses to environmental stress are poorly understood. Previous studies have demonstrated that the rice cell wall cellulose synthase-like D4 protein (OsCSLD4) is involved in cell wall polysaccharide synthesis and is important for rice growth and development. This study demonstrated that the OsCSLD4 function-disrupted mutant nd1 was sensitive to salt stress, but insensitive to abscisic acid (ABA). The expression of some ABA synthesis and response genes was repressed in nd1 under both normal and salt stress conditions. Exogenous ABA can restore nd1-impaired salt stress tolerance. Moreover, overexpression of OsCSLD4 can enhance rice ABA synthesis gene expression, increase ABA content and improve rice salt tolerance, thus implying that OsCSLD4-regulated rice salt stress tolerance is mediated by ABA synthesis. Additionally, nd1 decreased rice tolerance to osmotic stress, but not ion toxic tolerance. The results from the transcriptome analysis showed that more osmotic stress-responsive genes were impaired in nd1 than salt stress-responsive genes, thus indicating that OsCSLD4 is involved in rice salt stress response through an ABA-induced osmotic response pathway. Intriguingly, the disruption of OsCSLD4 function decreased grain width and weight, while overexpression of OsCSLD4 increased grain width and weight. Taken together, this study demonstrates a novel plant salt stress adaptation mechanism by which crops can coordinate salt stress tolerance and yield.

 

See https://pubmed.ncbi.nlm.nih.gov/34664356/

Figure 9

Proposed model for OsCSLD4 in rice salt stress response and growth and development. Rice can adapt to high salt environment by modulating the action of cell wall‐localized proteins, such as FERONIA (FER) and THESEUS1 (THE1), to regulate intracellular salt response to enhance plant salt stress tolerance. Except for involving in rice growth and development by regulating cell division, proliferation and elongation, OsCSLD4 plays an important role in rice basic and induced salt tolerance by modulating the content or activity or location of cell wall‐localized proteins, such as rapid the alkalinization factors (RALFs) and the wall‐associated kinases (WAKs), to sustain high ABA content to enhance osmotic stress tolerance.

 

Back      Print      View: 226

[ Other News ]___________________________________________________
  • Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia
  • Increasing plant group productivity through latent genetic variation for cooperation
  • THP9 enhances seed protein content and nitrogen-use efficiency in maize
  • The role of soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing
  • Progress in Soybean Genetic Transformation Over the Last Decade
  • Climate change challenges plant breeding
  • Breeding for disease resistance in soybean: a global perspective
  • The phosphorylation of AMPKβ1 is critical for increasing autophagy and maintaining mitochondrial homeostasis in response to fatty acids
  • Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height
  • Response of Southeast Asian rice root architecture and anatomy phenotypes to drought stress
  • Root Pulling Force Across Drought in Maize Reveals Genotype by Environment Interactions and Candidate Genes
  • Root hair-specific transcriptome reveals response to low phosphorus in Cicer arietinum
  • Protocol for targeted modification of the rice genome using base editing
  • Understanding the Dynamics of Blast Resistance in Rice- Magnaporthe oryzae Interactions
  • Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L.
  • Highly efficient transgene-free genome editing in tobacco using an optimized CRISPR/Cas9 system, pOREU3TR
  • Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing
  • Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed
  • Natural allelic variation of GmST05 controlling seed size and quality in soybean
  • Cassava mosaic disease and its management in Southeast Asia

 

Designed & Powered by WEBSO CO.,LTD