Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  5391992

Meta-analysis of genome-wide association studies reveal common loci controlling agronomic and quality traits in a wide range of normal and heat stressed environments
Saturday, 2021/07/24 | 06:06:44

Reem JoukhadarRebecca ThistlethwaiteRichard TrethowanGabriel Keeble-GagnèreMatthew J. HaydenSmi Ullah & Hans D. Daetwyler

Theoretical and Applied Genetics July 2021; vol. 134:2113–2127

Key message

Several stable QTL were detected using metaGWAS analysis for different agronomic and quality traits under 26 normal and heat stressed environments.

Abstract

Heat stress, exacerbated by global warming, has a negative influence on wheat production worldwide and climate resilient cultivars can help mitigate these impacts. Selection decisions should therefore depend on multi-environment experiments representing a range of temperatures at critical stages of development. Here, we applied a meta-genome wide association analysis (metaGWAS) approach to detect stable QTL with significant effects across multiple environments. The metaGWAS was applied to 11 traits scored in 26 trials that were sown at optimal or late times of sowing (TOS1 and TOS2, respectively) at five locations. A total of 2571 unique wheat genotypes (13,959 genotypes across all environments) were included and the analysis conducted on TOS1, TOS2 and both times of sowing combined (TOS1&2). The germplasm was genotyped using a 90 k Infinium chip and imputed to exome sequence level, resulting in 341,195 single nucleotide polymorphisms (SNPs). The average accuracy across all imputed SNPs was high (92.4%). The three metaGWAS analyses revealed 107 QTL for the 11 traits, of which 16 were detected in all three analyses and 23 were detected in TOS1&2 only. The remaining QTL were detected in either TOS1 or TOS2 with or without TOS1&2, reflecting the complex interactions between the environments and the detected QTL. Eight QTL were associated with grain yield and seven with multiple traits. The identified QTL provide an important resource for gene enrichment and fine mapping to further understand the mechanisms of gene × environment interaction under both heat stressed and unstressed conditions.

 

See https://link.springer.com/article/10.1007/s00122-021-03809-y

Back      Print      View: 35

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD