Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  3
 Total visitors :  4127222

Optimization of Bacterial Concentration by Filtration for Rapid Detection of Foodborne Escherichia coli O157:H7 Using Real-Time PCR Without Microbial Culture Enrichment.
Friday, 2019/10/18 | 07:21:46

Kim JHOh SW.

J Food Sci. 2019 Oct 11. doi: 10.1111/1750-3841.14836.

Abstract

Escherichia coli O157:H7 is an important foodborne pathogen and has been implicated in numerous food poisoning outbreaks worldwide. Although several microbiological and molecular methods have been developed to detect E. coli O157:H7, the difficulty to rapidly detect low levels of the foodborne bacteria persists. Here, the optimization of a filtration technique to concentrate and rapidly detect E. coli O157:H7 was conducted. Using homogenates prepared from freshly cut lettuce and cabbage samples, the E. coli O157:H7 concentration efficiencies of seven membrane filters were compared. Mixed cellulose ester (MCE) and polyvinylidene difluoride (PVDF) filters demonstrated the highest bacterial recoveries. In addition, the optimal E. coli O157:H7 detachment method from MCE filters after filtration was investigated. Tapping for 80 s was demonstrated to be the most effective method for detaching bacteria from the filters. Further, the possibility of the rapid detection of low levels of E. coli O157:H7 in lettuce and cabbage was evaluated using real-time polymerase chain reaction after bacterial concentration using MCE and PVDF filters. The use of MCE filters enabled the detection of 10° CFU/g (5 CFU/g) of E. coli O157:H7 within 2 hr without microbial enrichment culture. Therefore, concentration by filtration can be used for the rapid detection of low levels of foodborne pathogens. PRACTICAL APPLICATION: The modified method, which has been verified in this study, has been optimized to reduce the analysis time and to detect very low concentrations of E. coli O157:H7 within 2 hr. All these detection systems have a direct economic impact on the food analysis of producers, health authorities, or third-party laboratories.

 

See https://www.ncbi.nlm.nih.gov/pubmed/31604365

Back      Print      View: 23

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD