Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  5
 Total visitors :  6009018

Sparse testing using genomic prediction improves selection for breeding targets in elite spring wheat
Friday, 2022/06/24 | 08:16:36

Sikiru Adeniyi AtandaVelu GovindanRavi SinghKelly R. RobbinsJose Crossa & Alison R. Bentley

Theoretical and Applied Genetics June 2022; vol. 135: 1939–1950

Key message

Sparse testing using genomic prediction can be efficiently used to increase the number of testing environments while maintaining selection intensity in the early yield testing stage without increasing the breeding budget.

 

Spring wheat fields

Abstract

Sparse testing using genomic prediction enables expanded use of selection environments in early-stage yield testing without increasing phenotyping cost. We evaluated different sparse testing strategies in the yield testing stage of a CIMMYT spring wheat breeding pipeline characterized by multiple populations each with small family sizes of 1–9 individuals. Our results indicated that a substantial overlap between lines across environments should be used to achieve optimal prediction accuracy. As sparse testing leverages information generated within and across environments, the genetic correlations between environments and genomic relationships of lines across environments were the main drivers of prediction accuracy in multi-environment yield trials. Including information from previous evaluation years did not consistently improve the prediction performance. Genomic best linear unbiased prediction was found to be the best predictor of true breeding value, and therefore, we propose that it should be used as a selection decision metric in the early yield testing stages. We also propose it as a proxy for assessing prediction performance to mirror breeder’s advancement decisions in a breeding program so that it can be readily applied for advancement decisions by breeding programs.

 

See: https://link.springer.com/article/10.1007/s00122-022-04085-0

 

Figure 3: Plot-level heritability (diagonal) and genetic correlation between pairs of SEs (upper diagonal) from factor analytic model analysis of complete DS2

 

Back      Print      View: 42

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD