Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  4
 Total visitors :  7599129

Transcriptome Analysis Revealed the Potential Molecular Mechanism of Anthocyanidins` Improved Salt Tolerance in Maize Seedlings
Sunday, 2023/09/24 | 06:55:18

Jie WangZhipeng YuanDelin LiMinghao CaiZhi LiangQuanquan ChenXuemei DuJianhua WangRiliang GuLi Li

Plants (Basel); 2023 Jul 27; 12(15):2793. doi: 10.3390/plants12152793.

Abstract

Anthocyanin, a kind of flavonoid, plays a crucial role in plant resistance to abiotic stress. Salt stress is a kind of abiotic stress that can damage the growth and development of plant seedlings. However, limited research has been conducted on the involvement of maize seedlings in salt stress resistance via anthocyanin accumulation, and its potential molecular mechanism is still unclear. Therefore, it is of great significance for the normal growth and development of maize seedlings to explore the potential molecular mechanism of anthocyanin improving salt tolerance of seedlings via transcriptome analysis. In this study, we identified two W22 inbred lines (tolerant line pur-W22 and sensitive line bro-W22) exhibiting differential tolerance to salt stress during seedling growth and development but showing no significant differences in seedling characteristics under non-treatment conditions. In order to identify the specific genes involved in seedlings' salt stress response, we generated two recombinant inbred lines (RILpur-W22 and RILbro-W22) by crossing pur-W22 and bro-W22, and then performed transcriptome analysis on seedlings grown under both non-treatment and salt treatment conditions. A total of 6100 and 5710 differentially expressed genes (DEGs) were identified in RILpur-W22 and RILbro-W22 seedlings, respectively, under salt-stressed conditions when compared to the non-treated groups. Among these DEGs, 3160 were identified as being present in both RILpur-W22 and RILbro-W22, and these served as commonly stressed EDGs that were mainly enriched in the redox process, the monomer metabolic process, catalytic activity, the plasma membrane, and metabolic process regulation. Furthermore, we detected 1728 specific DEGs in the salt-tolerant RILpur-W22 line that were not detected in the salt-sensitive RILbro-W22 line, of which 887 were upregulated and 841 were downregulated. These DEGs are primarily associated with redox processes, biological regulation, and the plasma membrane. Notably, the anthocyanin synthesis related genes in RILpur-W22 were strongly induced under salt treatment conditions, which was consistented with the salt tolerance phenotype of its seedlings. In summary, the results of the transcriptome analysis not only expanded our understanding of the complex molecular mechanism of anthocyanin in improving the salt tolerance of maize seedlings, but also, the DEGs specifically expressed in the salt-tolerant line (RILpur-W22) provided candidate genes for further genetic analysis.

 

See https://pubmed.ncbi.nlm.nih.gov/37570948/

 

Figure 1: Seeds and seedling characteristics of RILpur–w22 and RILbro–w22. (ae) Seed phenotypes of two RILs and their (a), seed lengths (b), seed widths (c), seed thicknesses (d), and 100–seed weights (e). (fh) Seedling phenotypes (f), shoot lengths (g), and root lengths (h) of two RILs grown for 14 days under non–treated and salt–treated (100 mM NaCl solution) conditions. Bar = 1 cm; black dots, squares and triangles represent individual values for different samples; p values calculated by one–way ANOVA; p < 0.01 indicates that the difference is extremely significant; ns represents no difference.

Back      Print      View: 192

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD